Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Morphol ; 279(4): 458-471, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29178494

RESUMO

Odontocetes have specialized mandibular fats, the extramandibular (EMFB) and intramandibular fat bodies (IMFB), which function as acoustic organs, receiving and channeling sound to the ear during hearing and echolocation. Recent strandings of beaked whales suggest that these fat bodies are susceptible to nitrogen (N2 ) gas embolism and empirical evidence has shown that the N2 solubility of these fat bodies is higher than that of blubber. Since N2 gas will diffuse from blood into tissue at any blood/tissue interface and potentially form gas bubbles upon decompression, it is imperative to understand the extent of microvascularity in these specialized acoustic fats so that risk of embolism formation when diving can be estimated. Microvascular density was determined in the EMFB, IMFB, and blubber from 11 species representing three odontocete families. In all cases, the acoustic tissues had less (typically 1/3 to 1/2) microvasculature than did blubber, suggesting that capillary density in the acoustic tissues may be more constrained than in the blubber. However, even within these constraints there were clear phylogenetic differences. Ziphiid (Mesoplodon and Ziphius, 0.9 ± 0.4% and 0.7 ± 0.3% for EMFB and IMFB, respectively) and Kogiid families (1.2 ± 0.2% and 1.0 ± 0.01% for EMFB and IMFB, respectively) had significantly lower mean microvascular densities in the acoustic fats compared to the Delphinid species (Tursiops, Grampus, Stenella, and Globicephala, 1.3 ± 0.3% and 1.3 ± 0.3% for EMFB and IMFB, respectively). Overall, deep-diving beaked whales had less microvascularity in both mandibular fats and blubber compared to the shallow-diving Delphinids, which might suggest that there are differences in the N2 dynamics associated with diving regime, phylogeny, and tissue type. These novel data should be incorporated into diving physiology models to further understand potential functional disruption of the acoustic tissues due to changes in normal diving behavior.


Assuntos
Acústica , Tecido Adiposo/irrigação sanguínea , Mergulho/fisiologia , Golfinhos/anatomia & histologia , Golfinhos/fisiologia , Microvasos/anatomia & histologia , Baleias/classificação , Baleias/fisiologia , Tecido Adiposo/anatomia & histologia , Animais , Ésteres/análise , Lipídeos/análise , Filogenia , Ceras/análise
2.
Environ Sci Technol ; 50(17): 8977-92, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27464030

RESUMO

Pyrethroids are now the fourth most used group of insecticides worldwide. Employed in agriculture and in urban areas, they are detected in waterways at concentrations that are lethally and sublethally toxic to aquatic organisms. Highly lipophilic, pyrethroids accumulate in sediments and bioaccumulate in fishes. Additionally, these compounds are demonstrated to act as endocrine disrupting compounds (or EDCs) in mammals and fishes, and therefore interfere with endocrine signaling by blocking, mimicking, or synergizing endogenous hormones through direct receptor interactions, and indirectly via upstream signaling pathways. Pyrethroid metabolites have greater endocrine activity than their parent structures, and this activity is dependent on the enantiomer present, as some pyrethroids are chiral. Many EDCs studied thus far in fish have known estrogenic or antiestrogenic effects, and as such cause the inappropriate or altered expression of genes or proteins (i.e., Vtg-vitellogenin, Chg-choriogenin), often leading to physiological or reproductive effects. Additionally, these compounds can also interfere with other endocrine pathways and immune response. This review highlights studies that focus on the mechanisms of pyrethroid biotransformation and endocrine toxicity to fishes across a broad range of different pyrethroid types, and integrates literature on the in vitro and mammalian responses that inform these mechanisms.


Assuntos
Disruptores Endócrinos , Estrogênios/metabolismo , Animais , Peixes/metabolismo , Praguicidas , Piretrinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...